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Knowledge Graph



• “The JCDL conference 2022 is held as a hybrid event in Cologne, Germany.”

• (The JCDL conference 2022; is held; as a hybrid event in Cologne, Germany)

• (JCDL Conference 2022; is held; Cologne, Germany)

Nearly-Unsupervised Extraction Workflows

3Information Extraction Workflows — Hermann Kroll — Technische Universität Braunschweig

Open Information Extraction

Filtering



• Published at JCDL2021:

– https://github.com/HermannKroll/KGExtractionToolbox

– Shared as Open Source, written in Python and published with an MIT license

A Nearly-Unsupervised Extraction Toolbox
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Metformin treats
patients with type 2 
diabetes mellitus.

Metformin treats
patients with type 2 
diabetes mellitus.

𝒕𝒓𝒆𝒂𝒕𝒔
⊆ 𝐷𝑟𝑢𝑔 × 𝐷𝑖𝑠𝑒𝑎𝑠𝑒

Entity Vocabulary Relation Vocabulary

https://github.com/HermannKroll/KGExtractionToolbox


1. How much expertise and effort is required to apply 

nearly-unsupervised extractions across different domains?

2. How generalizable are these state-of-the-art extraction methods 

and particularly, how useful are the extraction results?

3. What is missing towards a comprehensive information

extraction from texts, e.g., for retaining the original information?

Research Questions
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• Investigated domains:

– Wikipedia (descriptive writing, vocabularies available)

– Pharmacy (entity-centric, controlled vocabularies)

– Political Sciences (focused on topics and events, no vocabularies) 

• Investigated methods:

– Dictionary-based entity linking & Stanford Stanza NER

– PathIE and Open IE6 (2020)

– Filtering (exact, partial, subject, no) 

– Canonicalization (vocabulary, word embedding)

Case Studies
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(The JCDL conference 2022; is held; as a hybrid event in Cologne, Germany)

• No Filter:

(The JCDL conference 2022; is held; as a hybrid event in Cologne, Germany)

• Partial Filter:

(JCDL conference 2022; is held; Cologne, Germany)

• Exact Filter:

No Extraction

• Subject Filter (New):

(JCDL conference 2022; is held; as a hybrid event in Cologne, Germany)

Filtering Extractions

7Information Extraction Workflows — Hermann Kroll — Technische Universität Braunschweig



• Dictionary-based entity linking:

– Derived vocabularies from Wikidata, MeSH, etc. were suitable

– Short entity names were often linked incorrectly (homonyms)

– Worked well in pharmacy (unambiguous concepts)

• Stanza NER:

– Worked well for persons, organizations, countries, etc.

– Did not produce precise entity identifiers

– Struggled with bad metadata (e.g., abstracts in upper case)

Summary Entity Linking
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• Open IE6:

– Worked well for short but bad for complex sentences

– Either noun phrases were short (good) or long (hard to filter)

– Missed relations if they are not mentioned via a verb phrase,

e.g., language from “The German book Känguru-Chroniken”

• PathIE:

– Worked well if relations are directed (Person received Award)

and bad if relations are undirected (Disease causes Disease)

– Allowed extractions via special words (therapy, member of, …)

Summary Information Extraction
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• No Filter:

– No precise semantics

• Partial Filter:

– Struggled for long noun phrases (complex sentences)

• Exact Filter: 

– Good quality but limited recall 

• Subject Filter (New):

– Allowed extraction of semi-structured information, 

e.g., actions performed by Albert Einstein or the EU

Summary Filtering
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• Building vocabularies was challenging:

– Worked well for: treats, award received, member of, …

– Which relation is expressed by do, publish, use, …?

– Sentence context was missing & embeddings did not help

Summary Canonicalization
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• How much expertise and effort is required to apply 

nearly-unsupervised extractions across different domains?

Research Questions (1/3)
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www.narrative.pubpharm.de

9x 2h sessions with experts

Several weeks of development 

Semi-structured knowledge

4x 1.5h sessions with experts

One week development

Some relations +

Semi-structured knowledge

Three days

http://www.narrative.pubpharm.de/


• How generalizable are these state-of-the-art extraction 

methods and particularly, how useful are the extraction results?

– Unsupervised extraction methods have a moderate precision 

but strongly limited recall (relations must be expressed via verbs)

– Filtering is necessary to obtain precise relation semantics

– Entity detection determines the overall quality

– Canonicalization remains challenging and worked only in a few cases

Research Questions (2/3)
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• What is missing towards a comprehensive information

extraction from texts, e.g., for retaining the original information?

– Context of information is often lost

– Provenance of information should be kept

Research Questions (3/3)
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1. Entity detection is required

2. Short and simple sentences are handled well and

for long sentences use exact or subject filter

3. For relations that are not expressed via verbs,

use PathIE + a relation vocabulary of special words

4. Use PathIE only if your relations are directed

5. Otherwise, you will need supervision

Best Practices
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𝒕𝒓𝒆𝒂𝒕𝒔
⊆ 𝐷𝑟𝑢𝑔 × 𝐷𝑖𝑠𝑒𝑎𝑠𝑒

Metformin treats
patients with type 2 
diabetes mellitus.



• Nearly-Unsupervised workflows are worth 

studying in digital libraries because they

– Bypass training data in the extraction phase completely

– Allow novel access paths to digital libraries

– But require extensive filtering in practice

Conclusion
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www.narrative.pubpharm.de

http://www.narrative.pubpharm.de/


Thank You!
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kroll@ifis.cs.tu-bs.de

@HermannKroll

If you have any questions, 

contact me via:


